Cytosolic heat shock protein 60, hypoxia, and apoptosis.

نویسندگان

  • S Gupta
  • A A Knowlton
چکیده

BACKGROUND Heat shock protein (HSP)60 is an abundant protein found primarily in the mitochondria, though 15% to 20% is found in the cytosol. Previously we observed that HSP60 complexes with bax in the cytosol. Reduction in HSP60 precipitates translocation of bax to the mitochondria and apoptosis. We hypothesized that HSP60 would decrease with hypoxia/reoxygenation and that this would precipitate bax translocation to the mitochondria and release of cytochrome c. METHODS AND RESULTS Adult rat cardiac myocytes were studied at end-hypoxia and at 10 and 24 hours of reoxygenation. HSP60 levels were unchanged at end-hypoxia and decreased 33% and 40% at 10 and 24 hours of reoxygenation, whereas HSP72 increased 80% and 110%. Bax and bcl-2 decreased during reoxygenation. However, cytochrome c release occurred at end-hypoxia, before reoxygenation. Cell fractionation was done to analyze this further. In normal myocytes, bax and HSP60 were present in the cytosol, and bax coimmunoprecipitated with cytosolic HSP60. At end-hypoxia, mitochondrial HSP60 was unchanged, but cytosolic HSP60 had disappeared and was now in the plasma membrane fraction. Concurrently, bax was no longer in the cytosol but now in the mitochondria. Thus, although total HSP60 remained the same, it no longer complexed with bax, and bax was free to translocate to the mitochondria and precipitate apoptosis. Reduction in ATP had a similar effect. CONCLUSIONS These studies show that hypoxia results in disassociation of the HSP60-bax complex with translocation of cytosolic HSP60 to the plasma membrane and bax to the mitochondria. This is sufficient to trigger apoptosis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cytosolic heat shock protein 60, apoptosis, and myocardial injury.

BACKGROUND Heat shock proteins (HSPs) are well known for their ability to "protect" the structure and function of native macromolecules, particularly as they traffic across membranes. Considering the role of key mitochondrial proteins in apoptosis and the known antiapoptotic effects of HSP27 and HSP72, we postulated that HSP60, primarily a mitochondrial protein, also exerts an antiapoptotic eff...

متن کامل

S . R . Kirchhoff , S . Gupta and A . A . Knowlton Cytosolic Heat Shock Protein 60 , Apoptosis , and Myocardial Injury

Background—Heat shock proteins (HSPs) are well known for their ability to " protect " the structure and function of native macromolecules, particularly as they traffic across membranes. Considering the role of key mitochondrial proteins in apoptosis and the known antiapoptotic effects of HSP27 and HSP72, we postulated that HSP60, primarily a mitochondrial protein, also exerts an antiapoptotic e...

متن کامل

Protective effect of crocin on electromagnetic field-induced testicular damage and heat shock protein A2 expression in male BALB/c mice

Objective(s): Exposure to electromagnetic fields (EMF) emitted from mobile phones may cause a deleterious effect on human health and may affect the male reproductive system. Crocin, a carotenoid isolated from Crocus Sativus L. (Saffron), is a phar‌macologically active component of saffron. So, this study was conducted to investigate the protective effect of crocin on t...

متن کامل

Induction of hypoxia-inducible factor-1α inhibits drug-induced apoptosis in the human leukemic cell line HL-60

BACKGROUND Leukemic cells originate from hypoxic bone marrow, which protects them from anti-cancer drugs. Although many factors that cause drug resistance in leukemic cells have been studied, the effect of hypoxia on drug-induced apoptosis is still poorly understood. METHODS In this study, we examined the effect of hypoxia on anti-leukemic drug resistance in leukemic cell lines treated with c...

متن کامل

Regulation of 17-AAG-induced apoptosis: role of Bcl-2, Bcl-XL, and Bax downstream of 17-AAG-mediated down-regulation of Akt, Raf-1, and Src kinases.

17-allylamino-demethoxy geldanamycin (17-AAG) inhibits the chaperone function of heat shock protein-90 (Hsp-90) and promotes the proteasomal degradation of its misfolded client proteins. Here, we demonstrate that treatment of the human acute myeloid leukemia HL-60 cells with 17-AAG attenuates the intracellular levels of a number of Hsp-90 client proteins, including Akt, c-Raf-1, and c-Src. Also...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Circulation

دوره 106 21  شماره 

صفحات  -

تاریخ انتشار 2002